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An effective farmer-centred mobile intelligence solution using
lightweight deep learning for integrated wheat pest management

A R T I C L E I N F O
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Tiny Object Detection

A B S T R A C T
Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest
damage in the most economical way and to minimise harm to people, property and the environment.
However, current research and products on the market cannot consolidate this process. Most existing
solutions either require experts to visually identify pests or cannot automatically assess pest levels
and make decisions based on detection results. To make the process from pest identification to pest
management decision making more automated and intelligent, we propose an end-to-end integrated
pest management solution that uses deep learning for semi-automated pest detection and an expert
system for pest management decision making. Specifically, a low computational cost sampling point
generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling
points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch
Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised
sampling specification and a mobile application to guide users to take photos that allow pest population
density to be calculated. A rule-based expert system is established to derive pest management
thresholds from prior agricultural knowledge and make decisions based on pest detection results.
We also propose a human-in-the-loop algorithm to continuously track and update the validity of the
thresholds in the expert system. The achieved accuracy of the pest detection model is 58.17%, 75.29%
and 42.6% on three pest datasets, respectively. The usability of the pest management system is assessed
by the User Experience Surveys and achieves an SUS score of 76.

1. Introduction
Wheat is an important food crop and is considered one

of the world’s four major food crops, along with rice, maize
and potatoes. Wheat is used as a staple food in more than 100
countries worldwide (Curtis, Rajaram, Gómez Macpherson
et al., 2002). About one third of the world’s population
depends on wheat as a staple food and it accounts for 27%
of global cereal production (Shewry, 2009).

The loss in potential yield from pest attack i.e., insect
and mollusc, can be substantial, to the point of total loss
of crop. Recently investigators have examined the effects
of pest attack on wheat yield. The Food and Agriculture
Organisation of the United Nations (FAO) estimates that
between 20% and 40% of global crop production is lost to
pests each year (Department for Environment, Food & Rural
Affairs, 2020). Plant diseases cost the global economy an
estimated $220 billion annually, while invasive insects cost
an estimated $70 billion (Sarkozi, 2019).

In the UK, aphids and the orange wheat blossom midge
are two major threats to the wheat, causing 3% yield loss
(Garthwaite, Thomas, Parrish, Smith and Barker, 2008).
This loss was reduced to 1.5% by using insecticides on
80% of the wheat acres (Clarke, Wynn, Twining, Berry,
Cook, Ellis, Gladders et al., 2009). Due to the low cost of
insecticides, the economic return from additional production
is six times the cost of treating aphids (Oakley, Walters, Ellis
and Young, 1998).

Hence growers apply pesticides to mitigate potential
yield loss These applications are often done on an insurance
basis (i.e., an application is made as a contingency to mit-
igate potential yield loss) because pest abundance is high.

ORCID(s):

These applications are potentially wasteful (no economic
benefit) and damaging to the environment. With sustainable
crop protection becoming more important, there is increas-
ing demand for decision support systems that can help
farmers grow crops more sustainably with fewer chemical
interventions.

To help address these issues, a large and growing body
of literature has investigated the pest identification and the
economic threshold levels. The Agriculture and Horticulture
Development Board (AHDB) have produced an encyclopae-
dia of pests and natural enemies in field crops. This provides
all the information required to make an informed decision
on whether pest control is warranted or not (Agriculture
and Horticulture Development Board, 2022). Although the
reference manual is very comprehensive, it is not specific to
wheat and not very user friendly in a field situation either
as a hard document or on a mobile phone. A new tolerance-
based decision support system to minimise the risk of crop
damage by wheat bulb fly (WBF) has been devised under
IPM principles by ADAS, a UK-based independent agri-
cultural and environmental consultancy (Leybourne, Storer,
Berry and Ellis, 2022). However, the identification of the
pest and a risk-based decision still needs to be made by
agronomists with specialist knowledge. To automate the
detection of pest species, artificial intelligence scientists are
using objective detection algorithms for pest identification.
Nevertheless, these deep learning-based algorithms can only
identify the type of pest, but cannot quantify the severity
of the current pest. There are two main scientific problems
that contribute to this issue. First, current pest thresholds
in the agricultural literature are difficult to use in computer
vision, for example, some pest thresholds are measured in
terms of the number of pests per plant, yet it is difficult for
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deep learning models to distinguish between different plants.
Secondly, because the actual area of a photograph is not
known, the density of the pest population in the photograph
cannot be calculated, so it is not possible to measure the
severity of the infestation directly from the photograph. In
addition, the economic thresholds for wheat vary according
to climate, water and heat conditions and pest species, and
sometimes pests develop resistance, making it difficult to use
a constant set of pest thresholds for decision making in all
environments.

This study has proposed a solution of integrated pest
management decision making for wheat pest aims to the
research problems mentioned above. The system combines
deep learning models for pest detection and counting with an
expert system for pest management decisions, with specific
contributions including:

• to design and train a light-weight deep learning model
for semi-automatic wheat pest detection on smart-
phones.

• to propose a sampling standard and a computational
graphics-based algorithm for sampling point gener-
ation that reflects the challenges of quantifying pest
severity from deep learning pest detection results.

• to convert the text-based thresholds for wheat pests
in the literature into a rule-based expert system to
overcome the difficulties of using textual prior knowl-
edge for computer vision-based integrated pest man-
agement.

• to implement a human-in-the-loop threshold optimi-
sation algorithm to semi-automatically adjust inaccu-
rate thresholds due to pesticide resistance or regional
differences.

The remainder of the paper is structured as follows.
Section 2 reviews the state of the art research on object de-
tection and integrated pest management. Section 3 presents
the datasets and the proposed solution of the semi-automatic
integrated pest management decision making system. Sec-
tion 4 evaluates the performance of the deep learning based
pest detection model and the usability of the proposed pest
management decision making system. Section 5 briefly con-
cludes the proposed approaches presented in section 3 along
with an outline of future work.

2. Literature Review
The scope of this research is deep learning based pest

identification and expert system based decision making for
pest management. Therefore, the literature review in this sec-
tion is divided into two parts, the first providing an overview
of relevant deep learning techniques in the literature for
target detection and the second outlining the application of
expert systems in agriculture.

2.1. Object Detection
Object detection is one of the important tasks in com-

puter vision to identify and localise all instances of object in
the image data. Early work on object detection was based
on hand-crafted feature extractors, such as the histogram
of oriented gradients (Dalal and Triggs, 2005) and Harris
corner detector (Harris, Stephens et al., 1988). However,
for complex multi-classification object detection tasks, these
traditional methods lose their effectiveness.

The convolutional neural networks (CNNs) were pro-
posed to solve the problem of low performance of hand-craft
features by automatically exploring effective features using
large amounts of image data, such as VGG (Simonyan and
Zisserman, 2014), ResNet (He, Zhang, Ren and Sun, 2016),
and CSPNet (Wang, Liao, Wu, Chen, Hsieh and Yeh, 2020a).
Based on the superiority of convolutional neural networks, a
series of deep learning-based object detection models have
been proposed, which is divided into two-stages detectors
and one-stages detectors. The two-stages detector divides the
detection process into two steps, the regional proposal stage,
and the detection stage. In contrast, the one-stages detector
proposed bounding box and classified object in one stage.
From the view of model structure, the difference between the
two-stage detector and one-stage detector lies in the presence
or absence of a separate module for generating bounding
box.

Faster Region-based Convolutional Neural Network (Fa-
ster RCNN) (Ren, He, Girshick and Sun, 2015) is the latest
work following the design of RCNN (Girshick, Donahue,
Darrell and Malik, 2014) detection model family, which
are all two-stage detection models. As the definition of the
two-stage detection model, the models structure of RCNN
family can be divided into two steps, the region of inter-
est proposal stage and detection stage. In the early RCNN
(Girshick et al., 2014), a traditional algorithm Selective
Search (Uijlings, Van De Sande, Gevers and Smeulders,
2013) was used to propose 2000 regions of interest. The
proposed regions were then warped and propagated through
a CNN backbone. The final detection results were subse-
quently obtained by Support Vector Machines (SVMs) and
Non-maximum suppression (NMS). In order to increase the
speed of detection, Faster RCNN use a CNN as a region
proposal network (RPN) to propose regions of interest with
associated objectness score. The multi-scale bounding boxes
obtained by RPN were combined with the feature maps in
the backbone network and passed through a classifier and
bounding box regressor to obtain the detection results.

In contrast, the Yolo detection model (Ge, Liu, Wang,
Li and Sun, 2021) family is representative of the one-stage
detectors, which solve the detection problem by directly
predicting the likelihood of related pixels being a detection
object and the bounding box properties in one stage. This
approach used convolutional neural networks to separate the
original input images into grids and predict the bounding
boxes and object scores for each grid, allowing for a simpler
and smaller model to detection. Those models gained faster
detection at the cost of detection accuracy in the early works.
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In recent work of YoloX (Ge et al., 2021), this cost is
offset by a large number training tricks and the adaptation
of the model structure. Specifically, various data augmenta-
tion methods, batch normalisation, and CLoU loss function
were used in the training phase of the detection model. In
terms of model structure, Cross-stage partial connections,
SPP-Block, PAN path aggregated block neck, Decoupling
detection head were used to optimise the model structure
to achieve fast and accurate detection. Overall, one-stage
detection model solves the problem of fast and accurate
object detection in a simpler way.
2.2. Expert Systems

Expert systems use computer models derived from hu-
man experts to deal with complex real-world problems that
require expert interpretation, and reach the same results as
experts (Liao, 2005). The Agricultural Expert System (AES)
applies expert system technology to the agricultural sector. It
summarises and brings together knowledge and techniques
from the field of agriculture and the knowledge of agricul-
tural experts, as well as data obtained through experiments
and mathematical models to simulate the decision-making
process of agricultural experts.

Since the 1980s, specialist systems technology has been
applied to agricultural problems, particularly in the area of
integrated pest management, which has been in development
for a relatively long time and is particularly well developed
(Gerevini, Perini, Ricci, Forti, Ioriatti, Mattedi, Monetti
et al., 1992; El-Azhary, Hassan and Rafea, 2000; Harrison,
1991). S. Kaloudis et al. describe an expert system for the
identification of forest pests and the provision of related con-
trol measures. The system identifies more than 40 species of
forest pests based on their growth stage, the damage caused
by the pests and the results of their research in the forest.
Once a pest has been identified, the system will provide a
suitable treatment plan to minimise damage to the forest by
the pest (Kaloudis, Anastopoulos, Yialouris, Lorentzos and
Sideridis, 2005). CUPTEX is an expert system that has been
developed to manage cucumber pests and diseases. The main
purpose of the system is to identify the causes of anomalies
and to make appropriate treatment recommendations. In
this case, the system starts with the identification of the
cause before recommendations are given (Rafea, El-Azhari,
Ibrahim, Edres, Mahmoud and Street, 1995). The Tomato
Expert System developed by Yialouris and Siderdis was used
to deal with the problem of identifying tomato pests and
diseases. A framework knowledge representation table was
used to describe the knowledge base, and notably fuzzy logic
was used to deal with uncertainty in the diagnosis (Yialouris
and Sideridis, 1996).

3. Materials and methods
The aim of this work is to automate the process of

integrated pest management decision in wheat. To automate
pest detection, we introduced deep learning, which relies
on a large amount of data. To address this research ques-
tion, we performed data augmentation of the collected data.

Another research problem that hinders the automation of
integrated pest management is the interaction between deep
learning model detection results and decision making expert
system. To address this challenge, we proposed a sample
point generation algorithm to aid sampling and a density
calculation algorithm to quantify the pest detection results
so that they can be used in an expert system. This section
also concludes with a description of the human-in-the-loop
algorithm for automatic correction of pest level thresholds
in expert systems
3.1. Pest Datasets

Multiple pest datasets were used for the work on pest
detection model, including both public and private datasets.
IP102 (Wu, Zhan, Lai, Cheng and Yang, 2019) is a public
dataset that includes 19k pest images with annotation belong
to 102 classes and 51k pest images without annotation. The
images in IP102 is collected through search engine, so the
backgrounds are more diverse. Most of the images have a
larger percentage of pest than that in images collected in real
environments. In comparison, AgriPest dataset (Wang, Liu,
Xie, Yang, Li and Zhou, 2021b) includes 49.7k pest images
of 14 species collected from natural environment with fixed
equipments and mobile equipments. We selected a subset of
AgriPest dataset containing two types of aphids by manual
screening To verify the ability of the detection model in a
realistic sampling scenario. In addition, we collected image
data using mobile equipments on three different UK farms
according to the proposed sampling specifications.

Table 1
Statistical information of datasets. The columns in the
table show the total number of samples, total number of
categories, the number of the largest category, the num-
ber of the smallest category, and the average percentage
of one object pixels in the image.

IP102 AgriPest Our Dataset

Num. of samples 19167 1000 661
Num. of objects 22284 6325 822
Num. of categories 97 2 7
Max. Num. of a category 2975 4755 379
Min. Num. of a category 2 1570 14
Avg. object pixels pct. 37.27 0.08 0.34

For improving the accuracy of detection model, multiple
data augmentation methods was used during the model
training phase. The data augmentation methods includes
basic image transformations, such as random flips, random
scaling, and random HSV color perturbation. In the work of
YoloX, Mosaic (Ge et al., 2021) is proposed for improving
the model accuracy, which splice four images randomly after
basic image transformations. The augmented image data is
shown in Figure 1. This artificially constructed training data
contains more invariance and enriches the training sample to
improve the accuracy of the model.
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(a) Flipping (b) Scaling

(c) HSV perturbation (d) Mosaic

Figure 1: Data Augmentation

3.2. Integrated pest management decision making
system

Automatic in-field pest detection and recognition using
mobile vision technique is a hot topic in modern intelligent
agriculture but suffers from serious challenges including
complexity of wild environment, detection of tiny size pest
and classification of multiple classes of pests. To overcome
these obstacles, the popular methods are to design a Convo-
lutional Neural Network (CNN) model that extracts visual
features and identifies crop disease images based on these
features. These methods work well on laboratory environ-
ment under simple background but achieve low accuracy and
poor robustness in processing the raw images captured from
practical fields that contain inevitable noises. Motivated
by the above mentioned inadequacy of existing studies, a
light-weight deep learning model for automatic wheat pest
detection architecture is established to fuse the features of
pest images and the features of contextual information to
be deployed on mobile devices towards pest recognition and
detection in the wild and make decisions of pest treatments.

The proposed architecture consists of three parts: server,
interface and local library. The server refers to a kubernetes
cluster that manages a number of RESTful web services
for user management, farm management, pest encyclope-
dia, decision making, thresholds optimisation function. The
interface and local library are implemented by Kotlin for
Android device.

Fig. 2 also displays an overall process of users to use
the system. Prior to using the system, users login the logs in
on the mobile application and the server grants access to the
successfully logged-in user. After logging in, the application
requests the server to obtain the field information associated
with the current user. Then the user selects the field for pest
management and selects the growth stage of the current crop.
At the same time, the sampling point generation algorithm
in the local library generates sampling points for the se-
lected field. Then the application interface jumps to the map
interface of the selected field, which shows the generated

sampling points and the user’s location, and the user goes to
each sampling point in turn to take pictures. Each sampled
picture calls the pest detection model in the local library for
classification and counting, and calls the density calculation
model to calculate the population density of the pests de-
tected in the photo. When all sampling points are sampled,
the pest detection results and population density calculation
results are uploaded to the decision-making expert system
in the server to request pest management suggestions. In
the pest management suggestion interface, the application
also requests the description of detected pests from the Pest
encyclopedia server.Every time a pest management decision
is completed, the system will send a questionnaire to the user
two to four weeks later to evaluate the effect of the last pest
detection, and the user’s feedback will be returned to the
threshold optimisation algorithm in the server to optimise
decision-making expert system.
3.2.1. Pest Detection Model

In this study, we proposed using YoloX as a detection
model framework to address the problem of counting pest
populations.(Yuan, Li, Yang and Li, 2022) As described in
related work, the detection model provides the ability to
draw a bounding box and classification for each instance of
object. We redesigned the detection model based on YoloX
in order to obtain high pest detection accuracy. The architec-
ture of proposed detection model is shown in Figure 3, in-
cluding a CNN backbone for features extraction, a detection
neck for fusion of multi-scale features, multiple decoupled
detection heads for obtaining the potential bounding box
and corresponding classification information in the input
image, and a Non-extreme suppression for obtaining the final
detection result.

In our detection model, we use CSPDarknet (Bochkovskiy,
Wang and Liao, 2020) as the backbone. In the CSPDarknet,
each CSP module has a residual block to learn more and
different features, which facilitates the accuracy of small
object detection. In addition, Spatial Pyramid Pooling is
used before the last CSP module to improve the percep-
tual field of the network by pooling with different size
of maximum pooling kernels. An improved version of
the ReLU activation function, SiLU (Elfwing, Uchibe and
Doya, 2018), is used throughout the detection model, which
has a smoother gradient change compared to the original
ReLU activation function. For detection neck, we use Path
Aggregate Network (Liu, Qi, Qin, Shi and Jia, 2018) which
is more accurate in tiny object detection. The decoupled
detection heads used separate convolutional neural networks
for classification, bounding box, and object score prediction,
improving detection accuracy at the cost of an acceptable
number of parameters.
3.2.2. Generating Evenly Distributed Sampling Points

Generating evenly distributed sampling points is the first
step in pest management. There are many mature sampling
point selection methods in the agricultural field. Such as
five-point sampling method, equidistant sampling method,
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User login

Crop stage information input

Sampling points display

Images information input Pest detection model

Density calculation algorithm

Pest detection results

Suggestion of pest management

Parallel Farming Interface Parallel Farming Local Library

User management server 

Parallel Farming Server

User Login

Fields information server 
Request fields information

Thresholds optimisation algorithm

Decision-making expert system

Sampling points generation  
algorithm

Pest encyclopaedia server 
Request pest information

Request suggestion

Return feedback

Return density

Return detection results

Return sampling points 

Input fields information

Input image information

Figure 2: Interaction between server, interface and local library
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Figure 3: The detection model structure.

grid sampling method, etc. However, these methods need
to be used manually by a person. When we use computers
to generate sample points using these methods, it is not
guaranteed that all the points generated will be in the field
because the computer cannot tell if a point is inside or
outside the field (see figure 4(a)(b)(c)(d)(e)(f). This is not
usually a problem in areas with large plains. However, it
can limit the use of our software in areas with complex field
shapes.

To overcome the dependency of the agricultural experts
on sample point selection, computer science researchers
started to develop computer-aided sample point selection
methods. A representative method for selecting uniform
sampling points is developed by ArcGIS and is based on
computational graphics. The mathematical basis of the
method is triangulation. This method can generate very uni-
form sampling points, but its computational cost is extremely
high, and it needs to generate a large number of sampling
points to make sure these points are uniformly distributed
which will significantly increase the workload at our user
end.

In response to the disadvantages of both traditional meth-
ods, modern methods, and computer-aid methods, we pro-
posed our own methods which can generate relatively uni-
form sampling points with exceptionally low computational
cost and the number of sampling points is significantly
reduce to relief our users from heavy workload. In prin-
ciple, our approach is based on two theories: equidistant
sampling method and ray casting algorithm. Equidistant
sampling is also known as equal-distance sampling which is
been widely used by the agronomists. Equidistant sampling
first divides the sampled field into several equal parts, the
distance or interval is determined by the sampling ratio, and
then the sample squares are drawn according to this equal
distance or interval in order to get uniformly distributed
sampling points. To addressing the challenge of determin-
ing whether the generated sampling points are within the
polygonal fields, Wo introduced ray casting algorithm. This
algorithm is sometimes also known as the crossing number
algorithm or the even–odd rule algorithm, and was known
as early as 1962 (Wo et al,. 2020). The algorithm is based on
a simple observation that if a point moves along a ray from
infinity to the probe point and if it crosses the boundary of a
polygon, possibly several times, then it alternately goes from
the outside to inside, then from the inside to the outside, etc.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Sampling points inside the field

Sampling points outside the field

Field

Auxiliary line

Figure 4: Equidistant Ray Casting Sampling (ERCS)

As a result, after every two "border crossings" the moving
point goes outside. This observation may be mathematically
proved using the Jordan curve theorem.

By fusing these two method and algorithm, we proposed
our sampling methods: Equidistant Ray Casting Sampling
(ERCS). ERCS firstly first place the field in a rectangle, the
size of which depends on the coordinates of the point at
the very edge of the field. Rays then vertically and equally
divide the rectangle. According to the ray casting algorithm,
the computer will be able to know which part of the ray
is inside the polygons by counting the number of intersec-
tions between the ray and the field’s boundaries. Hence, the
midpoints of the line segment inside the polygon will be
selected as the sampling points. In addition, as shown in
figure 4(g)(h) by adjusting the distances between the rays,
our users can adjust the number of sampling points, making
it easy to optimise their workloads.
3.2.3. Calculating population densities of pests using

single photographs
At present, most of the products on the market only

do the previous step, that is, pest detection. However, in
order to realise semi-automatic IPM in the whole process,
we not only need to realise pest detection, but also need
to conduct quantitative analysis on the detection results. In
order to achieve this goal, we need to relate the number and
species of pests detected by the deep learning model with

our prior knowledge of agriculture (Economic thresholds for
integrated pest management). However, the current existing
thresholds are usually the population density per unit area or
the number of pests per crop, whereas deep learning models
can only detect the species and quantity of pests in a photo
and cannot calculate the population density of each type
of pest, as the actual area of the photo is unknown. It is
also difficult for deep learning models to detect the type
and number of pests on a single plant, because when taking
pictures of most densely planted crops, one photo usually
contains multiple plants.

To achieve a link between thresholds in a prior agricul-
tural knowledge and pest detection results from deep learn-
ing models, we have designed a set of sampling methods and
population density calculation algorithms to solve the above-
mentioned problems. First of all, we standardised the user’s
photo-taking process, that is, taking pictures at a distance
of 30 cm from the target vertically. In order to achieve this,
in the camera interface of our software, we use gyroscope to
help users judge whether their shooting angle is vertical, and
minimise the artificial error of the shooting distance through
multi-point sampling. Then, we calculate the actual area of
the photo by extracting the Exchangeable Image File (EXIF)
information of the photo:

𝑆𝑎𝑐𝑡𝑢𝑎𝑙 =
𝐷𝑡𝑎𝑟𝑔𝑒𝑡

𝐹35𝑚𝑚
⋅ 24 × 36(𝑚𝑚2) (1)
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Figure 5: The proposed Integrated Pest Management decision
making expert system

Where 𝑆𝑎𝑐𝑡𝑢𝑎𝑙 is the actual area of the single photos,
𝐷𝑡𝑎𝑟𝑔𝑒𝑡 is the distance between the camera and the target
which has been stipulated by us as 30cm. 24 × 36(𝑚𝑚2)
is the actual sensor area of a full frame camera. 𝐹35𝑚𝑚 is
the 35mm equivalent focal length, which is the actual focal
length of the current camera when converted to a full-frame
camera. Because the sensor size of a full frame camera is
fixed, and our sampling criteria fixes the distance between
the object and the lens at 30cm, we only need the equivalent
focal length of the current camera to calculate the actual area
of the photo. Hence, we can calculate the population density
of each species of pest in a single photo and in the entire
field:

𝜌 =
𝑛𝑝𝑒𝑠𝑡
𝑆𝑎𝑐𝑡𝑢𝑎𝑙

(2)

𝜌𝑓𝑖𝑒𝑙𝑑 = 1
𝑛𝑝ℎ𝑜𝑡𝑜

𝑖=1
∑

𝑛𝑝ℎ𝑜𝑡𝑜

𝜌𝑖 (3)

where 𝜌 is the population density of a certain pest in a
single photo, 𝑛𝑝𝑒𝑠𝑡 is the quantity of the pest and 𝑆𝑎𝑐𝑡𝑢𝑎𝑙 is
the actual area of the photo. 𝜌𝑓𝑖𝑒𝑙𝑑 is the population density
of a certain pest in the entire field, 𝑛𝑝ℎ𝑜𝑡𝑜 is the total number
of samples taken in that field.

With the photos taken by the above photography stan-
dards, supplemented by the population density calculation
algorithm we proposed, the system can link the data obtained
from the sampling of mobile phone photography with the
threshold value in agricultural prior knowledge for subse-
quent pest management decision making.
3.2.4. Rule-based reasoning expert system for pest

management decision making
The calculation of the pest population density in the

sampled photos provides a data basis for semi-automated
IPM decision making. However, we still need to use relevant
prior agricultural knowledge to conduct qualitative analysis
on these data to make pest management decisions. There
have been many studies (Dewar, Ferguson, Pell, Nicholls
and Watts, 2016; Ellis, Berry, Walters et al., 2009; Wang,

Bai, Zhao, Su, Liu, Han and Chen, 2020b; Wang, Zhao,
Bai, Shang, Zhang, Hou, Chen and Han, 2021a; Gong, Li,
Gao, Wang, Li, Zhang, Li, Liu and Zhu, 2021; Honek, Mar-
tinkova, Saska and Dixon, 2018) on the main invertebrate
pests affecting wheat crops. However, the representation of
such prior knowledge from the literature is usually text,
which cannot be understood by computers. To address this
problem, we developed an expert system that allows a prior
knowledge of pests from the literature to be used to quantify
the pest detection results obtained from the deep learning
model.

Expert Systems are programme systems with exper-
tise and experience that use the knowledge and experience
provided by one or more experts in a particular field to
reason and make judgements, simulate the decision making
process of human experts, and use computers to automate
the solution of complex problems that need to be handled by
human experts. The rule-based expert system is currently the
most commonly used method, mainly due to a large number
of successful examples, as well as simple and flexible devel-
opment tools. It directly imitates the human mental process
and utilises a set of rules to represent expert knowledge.

In response to the above problems, we propose a rule-
based expert system whose structure is shown in the figure
5. It consists of five parts: Knowledge Database, Global
Database, Reasoning Machine, expositor and Human-Computer
Interface. The Knowledge Database stores the knowledge of
domain experts in a certain storage structure, including facts
and feasible operations and rules. The Knowledge Database
contains domain knowledge related to decision making. We
summarised the thresholds about wheat pest management
decision making in the previous literature (Dewar et al.,
2016; Ellis et al., 2009; Wang et al., 2020b, 2021a; Gong
et al., 2021; Honek et al., 2018) and normalised them
into a computer-understandable Knowledge Database. It has
an IF (condition) THEN (behaviour) structure. When the
condition of the rule is met, the rule is triggered, and then
make a decision. The Global Database is used to store initial
data and intermediate data obtained during the decision
making process. The Reasoning Machine selects matching
rules from the Knowledge Database according to the input,
and makes pest management decisions by executing the
rules. The Expositor is used to explain the behaviour of the
expert system to the user. The Human-Computer interface is
used to display the decision results and their explanations.
3.2.5. Human-in-the-loop threshold optimisation

algorithm
Although we have obtained some thresholds from the

literature, the above work is still not sufficient for a pest
management decision making system. There are a number
of reasons for this: First of all, not all crops have known
thresholds for each pest in each growth stage. For example,
there is no known threshold for gout fly in spring cereals,
despite the high risk of yield reduction (Ellis et al., 2009;
Dewar et al., 2016). Second, because some studies were
conducted a long time ago (more than ten years ago), their
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pest thresholds may not still be applicable today. last but
not least, pests will lead to increased resistance to pesticides
after natural selection, so we cannot use a constant threshold
for pest management in the future.

To keep the thresholds up-to-date in our pest man-
agement expert system, we designed a human-in-the-loop
threshold optimisation algorithm. Human-in-the-loop (HITL)
is a branch of artificial intelligence in which people partic-
ipate in a virtuous circle in which they train, adapt and test
specific algorithms to improve the accuracy of the model.

Specifically, each time a user makes a pest management
decision using the mobile software, in addition to recording
that decision, the server sends a questionnaire to the user
at regular intervals, asking the user to observe the situation
on the farm to determine the effectiveness of the previous
decision. The system then automatically adjusts specific
thresholds in the database based on this user’s observations.

4. Results and discussions
4.1. Evaluation Metrics

Multiple metrics were used to evaluate the object de-
tection model, including mean average precision (mAP),
the number of frames deal within a second (FPS), and the
number of parameters (Parameters) in the detection model.
The mean average precision is a general evaluation metric for
object detection model, which is defined as the mean value
of the area under the Precision-Recall (PR) curve:

𝑚𝐴𝑃 = 1
𝑁

∑

𝑛∈𝑁
∫

1

0
𝑃𝑟(𝑛)𝑑𝑅𝑒(𝑛) (4)

𝑃𝑟(𝑛) =
𝑇𝑃𝑛

𝑇𝑃𝑛 + 𝐹𝑃𝑛
=

𝑇𝑃𝑛
𝐴𝑙𝑙𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑛

(5)

𝑅𝑒(𝑛) =
𝑇𝑃𝑛

𝑇𝑃𝑛 + 𝐹𝑁𝑛
=

𝑇𝑃𝑛
𝐴𝑙𝑙𝐺𝑟𝑜𝑢𝑛𝑑𝑇 𝑟𝑢𝑡ℎ𝑛

(6)

where 𝑁 is the number of object categories, 𝑇𝑃𝑛, 𝐹𝑃𝑛,
and 𝐹𝑁𝑛 refer to the number of true positive samples, false
positive samples, and false negative samples for class 𝑛,
respectively. The true positive samples in object detection
tasks is defined by intersection over union (IoU), which is
a ratio of the overlap area in the union area between the
predicted bounding box and the annotated bounding box.
FLOPs and Parameters metrics measure the size of the object
detection model. The larger object detection model requires
more computational resources.
4.2. Performance Evaluation of the Detection

Model
We evaluated the performance of the detection model

using three pest datasets, including IP102, AgriPest, and
Our Dataset. Each dataset were divided into training dataset,
validation dataset, and test dataset in a ratio of 8:1:1. The
mAP for each trained model on the test dataset is calculated

and presented in Table 2. The compared models were pre-
trained on the COCO dataset (Lin, Maire, Belongie, Hays,
Perona, Ramanan, Dollár and Zitnick, 2014). As mentioned
before, multiple data augmentation methods were used in
training dataset. The dropout method was used in order to
avoid overfitting.

Table 2
The results for different detection model

Faster RCNN YoloX Our Model

FPS 11.45 12.97 13.21
Parameters 28275k 8976k 6759k
mAP (IP102) 55.25% 56.87% 58.17%
mAP (AgriPest) 7.18% 66.24% 75.29%
mAP (Our dataset) 7.76% 11.01% 42.6%

As Table 2 shown, we compare our model with Faster
RCNN and YoloX on the multiple pest dataset. Our model
outperforms Faster RCNN and YoloX due to it adopts the
Path Aggregation Network to fuse multi-scale features. In
particular, our models obtained mAP of 75.29% and 42.6%
on the AgriPest and our datasets, respectively. Meanwhile,
YoloX and our model achieves faster detection speed with
fewer training parameters than Faster RCNN. The main dif-
ference between our model and YoloX is the more efficient
necks of detector and data augmentation methods for pest
detection. In summary, our model achieves state-of-the-art
results in pest detection task.
4.3. Usability Evaluation of the proposed solution

The usability of the proposed solution rely on the friend-
liness of user interface and function design, in addition to
the stability of system. The mobile application provides end
users with the ability to browse farm information, add farm
records, respond to tasks, detect pests, view weather fore-
cast, modify app settings and more. Meanwhile, a manually
collected encyclopaedia of knowledge about pests and crops
is integrated as a knowledge base for providing the basic
knowledge and advice for model decisions in the integrated
pest management function. The above functional design is
based on a user requirements analysis of the system in early
stage. The usability evaluation process invites end users
to make subjective evaluations of the functionality of the
mobile application, the efficiency and accuracy of the func-
tions, and the user-friendliness of the interface. Specifically,
evaluation participants were asked to follow an instructional
document after logging into the app to complete their experi-
ence of the functions in the mobile application and to rate the
usability of key functions. The results are shown in Table 3

In addition to the evaluation of functional usability, an
open access experiment which invite participants to use the
application without restrictions was processed. The results
of this experiment was collected by the System Usability
Scale (SUS) questionnaire, which consists of ten questions
with a scale from strongly agree (5 points) to strongly
disagree (1 point) for each question.(Lewis, 2018) The ques-
tions in the SUS questionnaire focus on the system usability,
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Table 3
Questionnaire results for User Experience Tasks (Includ-
ing login, fields information, record, task, detection, and
IPM)

Task 1 (Hard) 2 3 4 5 (Easy)

Task 1 0% 0% 18% 36% 46%
Task 2 0% 0% 18% 18% 64%
Task 3 0% 0% 18% 36% 46%
Task 4 9% 0% 9% 9% 73%
Task 5 18% 9% 36% 9% 27%
Task 6 27% 9% 27% 27% 9%
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Figure 6: SUS Score of the our mobile application

such as, I think that I would like to use this system frequently,
and I needed to learn a lot of things before I could get going
with this system. The final evaluation results are calculated
according to Equation 7, where 𝑆1 to 𝑆10 indicate the
scoring of each of the 10 questions.

𝑆𝑈𝑆 = 2.5 × (20 + 𝑆𝑈𝑀(𝑆1, 𝑆3, 𝑆5, 𝑆7, 𝑆9)−
𝑆𝑈𝑀(𝑆2, 𝑆4, 𝑆6, 𝑆8, 𝑆10))

(7)

Figure 6 presents the results for the open access experi-
ment. According to the grading based on SUS scores(Lewis,
2018), the mobile application with an average score of 76 is
considered as a good product.

5. Conclusion and Future Work
In this work, we develop a practical application of an

end-to-end decision making system for integrated pest man-
agement that allows users to take just a few photos to get pest
management advice, enabling growers with no agricultural
knowledge to apply sustainable crop protection. The present
study has offered a framework which integrated deep learn-
ing objective detection and expert system for the exploration
of environmentally friendly pest management thresholds for
wheat. In this study, we proposed a low computational cost
sampling point generation algorithm that enables mobile
devices to generate evenly distributed sampling points in
arbitrary-shaped farmlands. We used PyTorch Mobile to
generate a lightweight pest detection model that can be
deployed on mobile devices, so that our application can
get rid of the constraints of communication infrastructure.
We have developed a standardised sampling protocol and
used our software to assist users with sampling, enabling the
calculation of pest population densities from a single photo-
graph. A rule-based expert system has been established for

deriving pest management thresholds from prior agriculture
knowledge and making decisions based on pest detection
results. We proposed a human-in-the-loop algorithm to con-
tinuously track the validity of thresholds in the expert system
and keep them up-to-date.

The experimental results show that our detection model
outperformed Faster RCNN and YoloX in term of FPS and
mAP. In the user evaluation of system usability, the proposed
system received 76 in SUS score.

A number of limitations need to be noted regarding the
present study. Firstly, our decision making expert system
and the human-in-the-loop threshold optimisation algorithm
have not been validated for the time being as this would take
many years of experimentation over multiple crop cycles
to complete. In terms of this direction for future research,
further work of validation of the decision making expert
system and the threshold optimisation algorithm in practice
is required to confirm the effectiveness of our proposed
solution. Secondly, our current sampling specification still
requires the user to manually control the distance between
the camera and the target, which inevitably affects the ac-
curacy of the pest population density calculation results.
Therefore, considerably more work will need to be done to
develop a distance measurement algorithm to enable more
accurate pest population density calculations.
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